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Stability of Cauchy Horizons
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We prove that for any 3-dimensional compact hypersurfaceS in a noncompact
4-dimensional space-time manifoldM , S⊂ M , the set of Lorentzian metrics onM
for which S is a partial Cauchy surface and Cauchy horizon ofS is nonempty contains
a nonempty open subset (in compact-open topology). This result indicates that the set
of metrics admitting Cauchy horizons originating from compact hypersurfaces is large.
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1. INTRODUCTION

The future boundary of domain of dependence, if non-empty, is called the
Cauchy horizon and it is a null surface. To the future of a Cauchy horizon space-time
cannot be predicted from the initial surfaceS. A fundamental unresolved problem
in classical relativity posed by Roger Penrose is whether there is a “cosmic censor”
that ensures existence of an initial surface from which the whole of space-time is
predictable and a Cauchy horizon does not occur. Hence it is of interest to study
the properties of Cauchy horizons. In this paper we study stability of Cauchy
horizons arising from compact Cauchy surfaces. We investigate whether there
exists an open set in the space of Lorentzian metrics for which such horizons arise.
Our main result is that for compact partial Cauchy surfaces an open set exists in
compact-open topology.

The topological stability of Cauchy horizons has already been investigated by
several authors. Beem (1995) has shown locational stability for compact subsets
of the horizon when the spacetime satisfies the strong causality condition and
he has proven that for a very general class of space-times there is a stability of
topological type of the horizon for nearby metrics with wider light cones. Chru´sciel
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and Isenberg (1997) have proven stability of compact Cauchy horizons whose null
generators admitted a global Poincar´e section and if a certain global quantity which
they callQ was sufficiently large.

2. PRELIMINARIES

Definition 1. A space-time (M, g) is a smooth 4-dimensional, connected
Hausdorff manifoldM with a semi-Riemannian metricgof signature (−,+,+,+),
a countable basis, and a time orientation.

A set S is said to beachronal if there are no two points ofS with timelike
separation.

Definition 2. The future Cauchy development D+(S) consists of all points
p ∈ M such that each past endless and past directed causal curve fromp in-
tersects the setS. Thefuture Cauchy horizonis H+(S) = (D+(S))− I −(D+(S)),
whereI −(D+(S)) is the chronological past ofD+(S).

We give definitions and state our results in terms of the future horizonH+(S),
but similar results hold for any past Cauchy horizonH−(S).

Some other basic definitions and concepts concerning causal and topological
structure of space-time can be found in (Beemet al., 1996; Hawking and Ellis,
1973).

3. STABILITY OF COMPACT CAUCHY HORIZONS

We shall first introduce a map between the space of Riemannian metrics and
the space of Lorentzian metrics and we shall give some of its properties.

Definition 3. Let V be a 4-dimensional vector space and lete0 ∈ V, e0 6= 0. Let
V∗ ⊗S V∗ be a symmetrized tensor product. LetW ⊂ V∗ ⊗S V∗ denote the open
set of such symmetric tensorsh thath(e0, e0) 6= 0.

φe0 : W→ W is a map given by

φe0(h)(x, y) = h(x, y)− 2h(e0, x)h(e0, y)

h(e0, e0)
.

The above map has the following properties:

• The mapφe0 is continuous.
• The map is involutive, i.e.φ2

e0 = I .
• If h is a scalar product thenφe0(h) is a Lorentzian metric.
• If h is a Lorentzian metric andh(e0, e0) < 0 thenφe0(h) is a scalar product.
• For arbitraryλ ∈ R, λ 6= 0,φλe0 = φe0, andφe0(λh) = λφe0(h).
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• Leth be a scalar product; thenx ∈ V is a vector such that the angle between
x ande0 is less than 45◦ if and only if x is timelike with respect to the
Lorentzian metricφe0(h).

Let us remark that the above definition can be naturally extended to the case
whene0 is a vector field onM and we haveT∗M ⊗S T∗M instead ofV∗ ⊗S V∗.
We shall denote the extended map also byφ.

The properties ofφ given above apply correspondingly.

Definition 4. Let8e0 denote the mapping given by the formula

8e0(σ ) := φe0σ

where the domain of8e0 is the set of sectionsσ ∈ Ck(T∗M ⊗ T∗M) such that
σ (e0, e0)|x 6= 0 at everyx ∈ M .

It follows as a corollary of the above given properties ofφe0 that

• 8e0 is involutive, and hence injective.
• the image of8e0 is equal to its domain.
• if σ is a Riemannian metric, then8e0(σ ) is a Lorentzian metric such that

e0 is timelike.
• conversely, ifσ is a Lorentzian metric such thate0 is timelike,8e0(σ ) is a

Riemannian metric.
• as a consequence, for every Lorentzian metricσ such thate0 is timelike,

there exists a Riemannian metric ˆσ such thatσ = 8e0(σ̂ ).

On the function space one often introduces a compact-open topology which
can be defined in the following way:

Let Ck(M) denote the set of all real-valued functions of classCk(k ≥ 0) on
the manifold M and letK ⊂ M be an arbitrary compact subset andO ⊂ R be an
arbitrary open subset.

The setsÄK ,O = { f : M → R | f (K ) ⊂ O} constitute a subbasis of
compact-open topology inCk(M).

For the case of sections of a bundle (like a space of metrics) a suitable gen-
eralization requires care: it should be independent of the choice of trivialization.
This condition is fulfilled by the following definition.

Definition 5. Let E(π, M) be a vector bundle whereE is the bundle space,M
is the base andπ is the projection. LetO be an open subset ofE and let K
be a compact subset ofM . Subbasis of the compact-open topology in the space
Ck(E, π, M) of Ck-sections (k ≥ 0) of the bundle is generated by the sets of the
formÄK ,0 = {σ ∈ Ck(E, π, M) | σ (K ) ⊂ O}.
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Theorem 1. Let M be a compact manifold (possibly with boundary) and let
E = T∗(M)⊗ T∗(M) be a symmetrized tensor product of two copies of cotangent
bundles over M and e0 be a nowhere vanishing vector field on M.

1. The set of Riemannian metrics on M is an open subset of the space of
sections of E in the compact-open topology.

2. 8e0 is continuous.
3. The image of the space of Riemannian metrics on M under8e0 is an open

set in the space of Lorentzian metrics on M.

Proof: Let O be the subset ofE consisting of all strictly positive-definite tensors
over all points of the base manifold. The setO is open inE because the set of
strictly positive-definite tensors at each point is an open subset of the corresponding
fiber, and the bundle is locally trivial. Property 1 follows from the compactness of
the base manifold.

The continuity of8e0 follows from the continuity ofφe0: consider a com-
pact subsetK ⊂ M and an open setU1 ⊂ E. Let ÄK ,U1 denote the set of sec-
tions of E that restricted toK take values inU1. It suffices to observe that
8−1

e0 (ÄK ,U1) = ÄK ,φ−1(U1).
The image of the set of Riemannian metrics onM under8e0 is the set of

Lorentzian metrics such thate0 is a timelike vector field. Letp ∈ M . The function
π−1(p)→ R such thatπ−1(p) 3 gp 7→ gp(e0

p, e0
p) is continuous (indeed, poly-

nomial) and consequently the conditiongp(e0
p, e0

p) < 0 defines an open subset in
π−1(p). Repeating the above construction for every fiber we obtain an open subset
U in E. The sections that are elements of the image of8e0 restricted to Riemannian
metrics take values in the setU . Because the manifoldM is compact we have that
the image of the set of Riemannian metrics under8e0 is open.

Proposition 1. Let M2 be a 4-dimensional compact manifold (possibly with
boundary) and M1 be a compact submanifold of M2. The restriction of Riemannian
metrics defined on M2 to M1, regarded as a mapping between spaces of sections
of the appropriate tensor bundles, is continuous with respect to the compact-open
topology and onto.

Proof: For simplicity of notation we denote by (F, π, M1) the restriction of the
bundle (E, π, M2) of symetric tensors onM2. LetÄK ,O be a certain element of the
subbasis of the spaceC(F, π, M1) of continuous sections of the bundle (F, π, M1).
We shall prove that counterimage ofÄK ,O under the restriction map is open in
the space of sectionsC(E, π, M2). Let O′ be the complement of the setO in F .
SinceM1 is a closed subset ofM2, F is closed inE. It follows that O′ is closed
in E, by virtue of being a closed subset of a closed subset ofE. Consequently the
complementU of O′ in E is an open set. It is easy to see that the set of sections
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of the bundle (E, π, M2) which on the setK take values inU is exactly equal to
the counterimage ofÄK ,O under the restriction map. Since the constructed set of
sections is open in the compact-open topology inC(E, π, M2) the restriction map
is continuous.

The fact that every Riemannian metric defined on a compact submanifoldM1

of M2 can be extended to all ofM2 follows from a standard construction using the
partition of unity.

Proposition 2. Let V1 be a 4-dimensional vector space and let V2 be a 3-
dimensional vector subspace of V1. Let e0 ∈ V1 and let e0 6∈ V2. Then the set
O of Riemannian metrics on V1 on which the angle between e0 and the normal to
V2 is greater than 45◦ is open.

The claim follows from the continuity of the angle and the normal with respect
to the metric.

Proposition 3. Let us consider the restriction of the tangent bundle T(S× [0, 1])
to S× {1} and let V1(x) denote the fiber of this bundle at x∈ S× {1} and V2(x) ⊂
V1(x) be the space tangent to S× {1} at x. Then the sumO over x of sets O(x)
defined for each point x∈ S× {1} as in Proposition 2, is an open subset of the
total space of the bundle E restricted to S× {1}.

The statement follows from the local triviality of the bundleE and from the
fact theO(x) is an open subset of the fiber at each pointx.

Lemma 1. The set of Riemannian metrics defined on the set S× [0, 1] such that
the angle between e0 and normal to S× {1} is greater than 45◦ at every point of
S× {1} is open.

At each point ofS× {1}, the cosine of the angle between two nonvanishing
vectors is given by a continuous function of the coefficients of the metric at that
point. Imposing an inequality on the value of this angle at a point defines an open
subset of the fiber of the tensor bundle over this point. Repeating this for all points
of S× {1} yields an open subsetO1 of the total space of the tensor bundle restricted
to S× {1}.ÄS×{1},O1 forms an open subset of the space of sections of the restricted
bundle. The counterimage of this subset under the restriction map is open in the
space of Riemannian metrics onS× [0, 1] by virtue of Proposition 3, proving the
claim.

Since the setO is open according to Proposition 3 then the set of sections of
the bundleE restricted toS× {1} taking values inO is open in the compact-open
topology.

We are now ready to state and prove our main result.
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Theorem 2. For any noncompact4-dimensional space-time manifold M and
any3-dimensional compact hypersurface S⊂ M the set of Lorentzian metrics on
M for which S is a partial Cauchy surface and Cauchy horizon of S is nonempty
contains a nonempty open subset (in compact-open topology).

The strategy of the proof is based on the following idea. We construct a set
G of Riemannian metrics onS× [0, 1] and the vector fielde0 such that for every
g ∈ G8e0(g) is a Lorentzian metric which has a closed timelike curve contained
in S× {1}. We shall prove thatG is open. From the existence of a closed timelike
curve inS× {1} it follows that8e0(g) has a Cauchy horizon inS× (0, 1).

Proof: If the future ofSis not of the formS× R+ then the Cauchy horizon ofSin
not empty, since the domain of dependence ofSis homeomorphic toS× R+. Thus
it is enough to restrict our attention to the case when future ofS is topologically
S× R+.

Let us consider the regionS× [0, 1] and lete0 = ∂/∂t wheret is the coordi-
nate along the interval [0, 1]. Let us take a neighbourhood ofS× {1} and the set
of metrics for which the angle between∂/∂t and normal toS× {1} is greater than
45◦ at every point ofS× {1}. By Lemma 1 the above inequality defines an open
subset in the space of Riemaniann metrics onS× [0, 1].

ConsideringS× {1} as a closed submanifold inS× [0, 1] we have by Propo-
sition 3 that the counterimage ofO (whereO is the set defined in Proposition 3)
under bundle restriction is an open subset of the set of Riemannian metrics on
S× [0, 1].

Using the map8 ∂
∂t

: ĝ→ g we obtain Lorentzian metricsg with the prop-
erty that metric induced onS× {1} has the signature (−1, 1, 1). It follows from
compactness ofS that for every such metric there exists a closed timelike curve in
S× {1}. Hence there must be a Cauchy horizon in the setS× (0, 1).
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